
gsqlcmd

Command Line Utility for Working with Databases

Version 4.1, February 3, 2017

User's Manual

© 2014-2017 Gartle Technology Corporation

2
4
4
5
5
5
5
5
5
5
5
6
7
8
9

11
11
11
11
12
12
12
12
12
13
18
18
18
18
18
18
19
19
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
20
21
22
22
22
23

Table of Content

Table of Content
Getting Started

Getting Started
Change History

Version 4.1, February 3, 2017
Version 4.0.3, January 25, 2017
Version 4.0, January 17, 2017
Version 3.4, November 2, 2016
Version 3.3, June 21, 2016
Version 3.2, March 15, 2016
Version 3.1, December 23, 2015
Version 3.0, October 20, 2015

Edition Comparison
System Requirements
End-User License Agreement

Using gsqlcmd
Using gsqlcmd

Database Connections
Executing SQL Scripts
Exporting Database Data
Using Variables in SQL Scripts
Internal Script Commands
Transaction Modes
Trace Mode
Importing CSV Data into Databases

Command Line
Command Line Modes
<Connection> Format
Query Execution Options
Functions for /set and /add parameters
Common Output Options
CSV Input Options
CSV Output Options
HTML Output Options
Code Generation Options

Command Line Modes
Execute
Prepare
Parse
Insert, Update, and Delete
Merge
Fmt+
Fmt
Create
Ace
Bulk
Ini
LocalConfig | UserConfig | AppConfig
Connections
Stamp
Help

Command Line Positional Parameters
<Connection>
<SQL Query> | <SQL File>
<CSV File>

2

23
24
24
24
24
24
24
24
25
25
26
26
26
26
26
26
27
27
27
27
27
27
27
28
28
28
28
28
29
29
29
29
29
29
29
29
29
29
30
32
33
33
34
34
35
36
38
38
38

<Output File>
Query Execution Options

/CommandTimeout=<seconds>
/ConnectionTimeout=<seconds>
/NoTransaction
/InputCodePage=<codepage>
/OutputCodePage=<codepage>
/Set=<parameter>=<value | function>[;...]
Functions for /set and /get Parameters
/Trace

Common Output Options
/AddRowNum
/Append
/AsText | AsCSV | AsHTML
/DateTimeFormat=<datetime format>
/NoHeaders

CSV Options
/Add=<header=value | function>[<separator>...]
Functions for /set and /get Parameters
/[Output]Separator=<separator>|tab
/InputSeparator=<separator>|tab
/QuoteChar=<char>
/EscapeChar=<char>

HTML Output Options
/NoTemplate
/Placeholder=<placeholder>
/Template=<HTML template file>
/Title=<title>

Code Generation Options
/Table=<target database table | view | stored procedure> | <SQL template file>
/fmt=<format file>
/InsertIdentity
/InsertNulls
/SingleLineSQL
/GroupSize=<number of rows>
/keys=<field>[,<field>[,...]]
/mssql | sqlce | mysql | oracle | db2 | nuodb | pgsql | sqlite

Exit Codes
gConnectionManager
Configuration File
Product Registration

Selecting Product
Selecting Edition
Licensee Data
Online Registration
Registration by Email

Technical Support
Technical Support
Frequently Asked Questions

3

G et t i ng St ar t ed

Getting Started

gsqlcmd is a command line utility for working with databases. It allows:

Executing SQL commands and scripts with parameters.
Exporting data from databases into text, CSV, and HTML.
Preparing configuration files for importing CSV files into databases.
Generating INSERT, UPDATE, DELETE, and MERGE commands for CSV data.
Importing CSV files into databases.

gsqlcmd allows working with different database servers in the same manner and performing usual developer tasks with fewer efforts.

Note that you may load from the web and convert XML, JSON, HTML, CSV and text into CSV using the companion gwebcmd utility.

gsqlcmd supports the following database platforms:

Microsoft Azure SQL Database
Microsoft SQL Server
Microsoft SQL Server Compact
Oracle Database
IBM DB2
MySQL and MariaDB
NuoDB
PostgerSQL
SQLite

You may start learning about gsqlcmd on the following topics:

Using gsqlcmd
Importing CSV Data into Databases
Edition Comparison
Command Line
Connection Manager
Configuration File
Frequently Asked Questions

4

Change History

Version 4.1, February 3, 2017

Bug Fixes:

Fixed possible issues with detecting primary keys in SQL Server.
The bug was added in gsqlcmd 4.0.

Version 4.0.3, January 25, 2017

Bug Fixes:

Fixed issues with creating SQLite databases.

Version 4.0, January 17, 2017

You may upgrade previous versions to gsqlcmd 4.0 for free.

New features:

gsqlcmd supports SQLite databases.
The CreateSQLite3 mode allows creating new SQLite database files.
The /keys option allows defining fields used instead of primary key fields in INSERT, UPDATE, and DELETE commands.
You may use this option, for example, to synchronize data between different databases using fields like email or SSN instead of identity
fields.
gsqlcmd is available as a subscription.

Improvements:

Updated gConnectionManager 3.0.
Significantly improved performance of executing MySQL commands.

Version 3.4, November 2, 2016

Bug Fixes:

Omitting SET IDENTITY_INSERT commands.
Skipping empty rows when creating MySQL stored procedures.

Version 3.3, June 21, 2016

New features:

Application for generating install scripts of Microsoft SQL Server database application.
New product website - www.gsqlcmd.com.

Improvements:

Updated gConnectionManager 2.2.

Version 3.2, March 15, 2016

New features:

gsqlcmd Installer.

Improvements:

Updated gConnectionManager 2.2.

Version 3.1, December 23, 2015

New features:
5

Connection string advanced properties.

Improvements:

Updated provider for PostgreSQL.
Updated provider for MySQL.

Version 3.0, October 20, 2015

End-User License Agreement has been changed.
gsqlcmd Express Edition has been removed.
You may continue to use the free version with the same features.

6

Edition Comparison

gsqlcmd allows easily executing the following tasks:

1. Executing SQL queries and scripts with parameters.
2. Exporting database data into CSV, HTML, and text.
3. Preparing configuration files for importing CSV files into databases.
4. Generating INSERT, UPDATE, DELETE, and MERGE commands for CSV files.
5. Importing CSV files into databases.

This one tool can replace sqlcmd, bcp, sqlplus, db2, and mysql in the most scenarios with additional benefits.
It allows getting results with fewer efforts and for all major database platforms in the same way.

Feature Free Personal Enterprise

Features available on all supported database platforms

Executing SQL queries and scripts with parameters

Exporting data into CSV, HTML, and text

Generating CREATE TABLE statements for importing CSV files

Generating INSERT, UPDATE, DELETE and MERGE commands for CSV files 500 rows

Generating SQL commands using SQL templates for CSV files 500 rows

Generating execute stored procedure commands for CSV files 500 rows

Generating schema.ini for importing CSV files using ODBC

Using named connection strings, opened and encrypted

Supported database servers:
SQL Server, SQL Server Compact, MySQL, Oracle, DB2, NuoDB, PostgreSQL, SQLite

Features specific to Microsoft SQL Server

Generating format files and SQL codes for OPENROWSET(BULK...)

Generating SQL codes for OPENROWSET using MICROSOFT.ACE.OLEDB.12.0

Licensing

Commercial use

7

System Requirements

Supported Architectures:

x86
x64

Supported Operating Systems:

Windows XP SP3, Vista SP1, 7, 8, 8.1, 10
Windows Server 2003 SP3, 2008, 2008 R2, 2012, 2012 R2, 2016

Supported Versions of Microsoft SQL Server:

Microsoft SQL Server 2005, 2008, 2008 R2
Microsoft SQL Server 2012, 2014, 2016 including Express LocalDB
Microsoft Azure SQL Database

Supported Versions of Microsoft SQL Server Compact:

Microsoft SQL Server Compact 3.5, 4.0

Supported Versions of Oracle Database:

Oracle Database 10g Release 1, Release 2
Oracle Database 11g Release 1, Release 2
Oracle Database 12c Release 1

Supported Versions of IBM DB2:

IBM DB2 9.5, 9.7, 9.8, 10.1, 10.5, 11.1

IBM DB2 .NET Provider, IBM DB2 OLE DB Provider or IBM DB2 ODBC driver installed is required.

Supported Versions of MySQL:

MySQL 5.0, 5.1, 5.2, 5.5, 5.6, 5.7

Supported Versions of SkySQL MariaDB:

MariaDB 5.1, 5.2, 5.3, 5.5, 10.0, 10.1, 10.2

All application features for MySQL are completely compatible with MariaDB.
ADO.Net Driver for MySQL and MySQL ODBC drivers can be used to connect to MariaDB.
MariaDB ODBC Driver 1.0 is not supported.

Supported Versions of NuoDB:

NuoDB 2.0.4, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6

Supported Versions of PostgreSQL:

PostgreSQL 8.0, 8.1, 8.2, 8.3, 8.4, 9.0, 9.1, 9.2, 9.3, 9.4

Supported Versions of SQLite:

SQLite 2, 3

8

End-User License Agreement

This End-User License Agreement (EULA) is a legal agreement between you (either an individual or a single entity) and Gartle Technology
Corporation for any gsqlcmd software, use examples and documentation (Software) that accompany this EULA.

YOU AGREE TO BE BOUND BY THE TERMS OF THIS EULA BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE.

IF YOU DO NOT AGREE, DO NOT INSTALL, COPY, OR USE THE SOFTWARE.

Your licensing of Software is in accordance with the terms of the EULA in effect at the time of such licensing. By licensing Software, you accept
and agree to the EULA in effect at such time.

1. GRANT OF LICENSE: Gartle Technology Corporation grants you the following rights provided that you comply with all terms and conditions
of this EULA:

1. Installation and Use: You may install, use, access, display and run the Software free of charge on a non-exclusive basis and without
right of sublicense.
The free version has several limits. You may purchase and register gwebcmd Personal or Enterprise edition to remove limits. The
commercial use of the gwebcmd Personal edition is not permitted.

2. Software Transfer: You may transfer the Software to a different internal workstation or user so long as you have purchased a License
for each such workstation or user. You may not, however, transfer the Software to a Third Party.

3. Use of Examples: You may install, access, modify and use Software examples for your private or company internal purposes.
2. LIMITATIONS: You may not use, copy, modify, display, rent, lease, loan, transfer, distribute, download, merge, or make any translation or

derivative work of the Software, except as expressly provided herein. You may not reverse engineer, decompile, or disassemble the
Software, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.

3. INTELLECTUAL PROPERTY RIGHTS AND CONFIDENTIALITY: The Software, including methods, processes and/or techniques utilized therein,
is owned by, proprietary to and valuable trade secrets of Gartle Technology Corporation and is protected by Russian Federation copyright
law and international treaties. You agree to take no actions that impair or infringe Gartle Technology Corporation's intellectual property
rights in the Software. You agree not to remove, efface or obscure any copyright notices, other proprietary markings or confidentiality
legends placed upon or contained within the Software.

4. DISCLAIMER OF WARRANTIES: Gartle Technology Corporation disclaims all warranties concerning the Software and Services (if any),
express, implied, or statutory, including without limitation, any warranties, duties or conditions of merchantability or fitness for a particular
purpose, warranties of reliability or availability, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses,
and of lack of negligence, all with regard to the Software, and the provision of or failure to provide support or other services, information,
software, and related content through the Software or otherwise arising out of the use of the Software. Gartle Technology Corporation
does not warrant that the Software will operate in combination with other software products selected by you, or that the Software will
operate uninterrupted or error-free. Additionally, Gartle Technology Corporation and its suppliers provide the Software and Services AS IS
AND WITH ALL FAULTS. THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,
CORRESPONDENCE TO DESCRIPTION, OR NONINFRINGEMENT WITH REGARD TO THE SOFTWARE.

5. NO LIABILITY: TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL GARTLE TECHNOLOGY CORPORATION
OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, PUNITIVE, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFITS OR CONFIDENTIAL OR OTHER INFORMATION, FOR LOSS OF
DATA, FOR BUSINESS INTERRUPTION, FOR PERSONAL INJURY, FOR LOSS OF PRIVACY, FOR FAILURE TO MEET ANY DUTY INCLUDING
OF GOOD FAITH OR OF REASONABLE CARE, FOR NEGLIGENCE, AND FOR ANY OTHER PECUNIARY OR OTHER LOSS WHATSOEVER)
ARISING OUT OF OR IN ANY WAY RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE, THE PROVISION OF OR FAILURE TO
PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFTWARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR
OTHERWISE ARISING OUT OF THE USE OF THE SOFTWARE, OR OTHERWISE UNDER OR IN CONNECTION WITH ANY PROVISION OF THIS
EULA, EVEN IN THE EVENT OF THE FAULT, TORT (INCLUDING NEGLIGENCE), MISREPRESENTATION, STRICT LIABILITY, BREACH OF
CONTRACT OF GARTLE TECHNOLOGY CORPORATION OR ANY SUPPLIER, AND EVEN IF GARTLE TECHNOLOGY CORPORATION OR ANY
SUPPLIER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

6. LIMITATION ON REMEDIES: Within the first thirty (30) days after your receipt of the Software, should you encounter and report to Gartle
Technology Corporation within such time period a reproducible error that causes the Software not to perform in all material respects as set
forth in the Software documentation, then Gartle Technology Corporation will, at its sole discretion, either: a) resolve the error or
malfunction, and modify or replace the Software (if deemed necessary by Gartle Technology Corporation); or b) allow you to terminate this
EULA with respect to the non-conforming Software and, upon your return of the Software to Gartle Technology Corporation, Gartle
Technology Corporation shall provide you with the lesser of a) the actual damages incurred by you; or b) the amount you paid for the
nonconforming Software. The remedies described in this section shall be your sole and exclusive remedies under this EULA.

7. GENERAL PROVISIONS
1. Reservation of Rights and Ownership: Gartle Technology Corporation reserves all rights not expressly granted to you in this EULA. The

Software is licensed, not sold.
2. Consent to Use of Data: You agree that Gartle Technology Corporation and its affiliates may collect and use technical information

gathered as part of the Software support services provided to you, if any, related to the Software. Gartle Technology Corporation may
use this information solely to improve Gartle Technology Corporation products or to provide customized services or technologies to
you and will not disclose this information in a form that personally identifies you.

9

3. Links to Third Party Sites: We may link to third party sites through the use of the Software. The third party sites are not under the
control of Gartle Technology Corporation, and Gartle Technology Corporation is not responsible for the contents of any third party
sites, any links contained in third party sites, or any changes or updates to third party sites. Gartle Technology Corporation is not
responsible for webcasting or any other form of transmission received from any third party sites. Gartle Technology Corporation is
providing these links to third party sites to you only as a convenience, and the inclusion of any link does not imply an endorsement by
Gartle Technology Corporation of the third party site.

4. Additional Software/Services: This EULA applies to updates, supplements, add-on components, or Internet-based services
components, of the Software that Gartle Technology Corporation may provide to you or make available to you after the date you
obtain your initial copy of the Software, unless Gartle Technology Corporation provides other terms along with the update,
supplement, add-on component, or Internet-based services component. Gartle Technology Corporation reserves the right to
discontinue any Internet-based services provided to you or made available to you through the use of the Software.

5. Upgrades: To use Software identified as an upgrade, you must first be licensed for the software identified by Gartle Technology
Corporation as eligible for the upgrade. After upgrading, you may no longer use the software that formed the basis for your upgrade
eligibility.

6. Applicable Law: This EULA is governed by the laws of the Russian Federation. Any legal action or proceeding relating to this EULA shall
be instituted in a court of arbitration in the Moscow City, Russian Federation. Gartle Technology Corporation and you agree to submit
to the jurisdiction of, and agree that venue is proper in, these courts in any such action or proceeding. The prevailing party in any
action to enforce this EULA will be entitled to recover its attorney fees and costs in connection with such action.

7. Waiver: The failure of either party to enforce any of the terms of this EULA shall not be construed as a waiver of future enforcement of
that or any other term.

8. Entire Agreement and Severability: This EULA (including any addendum or amendment to this EULA which is included with the
Software) is the entire agreement between you and Gartle Technology Corporation relating to the Software and the support services
(if any) and it supersedes all prior or contemporaneous oral or written communications, proposals and representations with respect to
the Software or any other subject matter covered by this EULA. To the extent the terms of any Gartle Technology Corporation policies
or programs for support services conflict with the terms of this EULA, the terms of this EULA shall control. If any provision of this
EULA is held to be void, invalid, unenforceable or illegal, the other provisions shall continue in full force and effect.

9. Termination: Without prejudice to any other rights, Gartle Technology Corporation may terminate this EULA if you fail to comply with
the terms and conditions of this EULA. In such event, you must destroy all copies of the Software and all of its component parts and
you will not be entitled to any refund of monies.

10

Usi ng gsql cm d

Using gsqlcmd

The gsqlcmd command line utility solves common database developer tasks:

Executing SQL scripts for creating, modifying, and deleting database objects (DDL) and data (DML).
Exporting database data into text, CSV, and HTML.
Preparing configuration files for importing CSV files into databases.
Generating INSERT, UPDATE, DELETE, and MERGE commands for CSV files.
Importing CSV files into databases.

gsqlcmd solves these tasks easily than native database command line utilities and has the same syntax for all supported database servers.

Note that you may load from the web and convert XML, JSON, HTML, CSV and text into CSV using the companion gwebcmd utility.

Command line formats:

gsqlcmd [execute] <connection> <sql query | file> [<output file>] [<options>]
gsqlcmd prepare <connection> <sql query | file> [<output file>] [<options>]
gsqlcmd parse <connection> <sql query | file> [<output file>] [<options>]
gsqlcmd insert <connection> <csv file> [<output file>] [<options>]
gsqlcmd update <connection> <csv file> [<output file>] [<options>]
gsqlcmd delete <connection> <csv file> [<output file>] [<options>]
gsqlcmd merge <connection> <csv file> [<output file>] [<options>]
gsqlcmd fmt+ <csv file> [<options>]
gsqlcmd fmt <csv file> [<output file>] [<options>]
gsqlcmd create|bulk|ini|ace <csv file> [<output file>] [<options>]
gsqlcmd localconfig | userconfig | appconfig
gsqlcmd connections
gsqlcmd help [chm]
See Command Line for a complete description.

You may use exit codes in batch files.

Database Connections

Executing an SQL command requires a database connection.

Specify the connection in the first positional parameter.

You may specify a connection string or the connection string name from the configuration file.

The connection string is searched by the name in the following configuration files:

1. gsqlcmd.exe.config in the current directory;
2. gsqlcmd.exe.config in the %LocalAppData%\Gartle\gsqlcmd directory;
3. gsqlcmd.exe.config in the utility home directory.

You may use gConnectionManager to create, edit, copy or delete connection strings in visual mode.

Use localconfig, userconfig, and appconfig commands to open the configuration files.

Use the connections command to list defined connection string names.

Executing SQL Scripts

There is an example of executing the rtd-setup-sqlce.sql script against the sqlce-rtd connection defined in the configuration file:

gsqlcmd sqlce-rtd rtd-setup-sqlce.sql

There is an example of executing the rtd-setup-sqlce.sql script against the Microsoft SQL Server Compact rtd.sdf database:

gsqlcmd "Data Source=rtd.sdf" rtd-setup-sqlce.sql

There is an example of executing the rtd-setup-mssql.sql script against the Microsoft SQL Server RTD database:

gsqlcmd "Provider=SQLOLEDB;Data Source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=RTD" rtd-setup-mssql.sql

11

Exporting Database Data

There is an example of executing an SQL statement with the output to the console:

gsqlcmd mysql-rtd "SELECT * FROM INFORMATION_SCHEMA.TABLES"

By default, the text output is used for the console and files with the *.txt extensions.

There is an example of executing the export-quotes.sql script with the output to the quotes.csv file in the CSV format:

gsqlcmd db2-rtd export-quotes.sql quotes.csv

The CSV output format is used for files with the *.csv extensions.

If you need to redirect the output in the CSV format, specify the CSV format explicitly. For example:

gsqlcmd rtd-db2 export-quotes.sql /asCSV >> quotes.csv

Also, you may specify additional options for output:

gsqlcmd rtd-db2 export-quotes.sql quotes.csv /separator=, /datetimeformat=yyyy-MM-dd

There is an example of HTML output:

gsqlcmd rtd-ora export-quotes.sql quotes.htm

This command uses the default built-in HTML template. You may specify using your template:

gsqlcmd rtd-ora export-quotes.sql quotes.htm /template=table-template.htm

You may turn off using the template using the /notemplate option.

Using Variables in SQL Scripts

SQL commands and scripts can use values from the /set option of the command line.

For example:

gsqlcmd mssql-rtd "SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = @Table" /set=Table=RealTimeTables
gsqlcmd mysql-rtd "SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = :Table" /set=Table=real_time_tables

Use declarations in scripts as @<Parameter> for Microsoft SQL Server and Microsoft SQL Server Compact, and as :<Parameter> for MySQL,
MariaDB, Oracle Database, IBM DB2, and NuoDB.

Do not use variables with the scripts that contain variable declarations as SQL statements for database servers.
For example, in create statements for stored procedures and triggers.

Internal Script Commands

SQL scripts can contain the -- print <Message> command that is executed internally and outputs the message.

It is useful for monitoring script execution progress.

This command works for all databases servers in the same manner even the server does not support print commands.

For example:

-- print Table ColumnTranslation has been created

Transaction Modes

SQL commands are executed in the ReadCommitted transaction isolation level.
The default rule is "all or nothing".

You may turn off the transaction mode using the /notransaction option.
It is useful, especially, for deleting database objects using scripts as some of the deleted objects may not exist.

Trace Mode

If a script has errors or is being executed for a long time, turn on the trace mode using the /trace option.

By default, trace messages are written to the console. You may redirect the trace messages using the gsqlcmd.exe.config configuration file.
12

Importing CSV Data into Databases

gsqlcmd allows generating the following files for importing CSV data into databases:

CREATE TABLE SQL statements.
Format files for OPENROWSET(BUCK...) import (SQL Server only).
INI files for ODBC drivers.
INSERT INTO ... SELECT statements for OPENROWSET(BUCK...) import (SQL Server only).
INSERT INTO ... SELECT statements for OPENROWSET using MICROSOFT.ACE.OLEDB.12.0 (SQL Server only).
INSERT statements.
INSERT and UPDATE statements.

Note that you may load from the web and convert XML, JSON, HTML, CSV and text into CSV using the companion utility gwebcmd.

Creating Format Files

Originally, format files are used with the Microsoft SQL Server bcp command line utility and the OPENROWSET(BUCK...) function.

gsqlcmd allows generating such files and uses them as column name data sources for other modes.

So you may generate the format file first, edit it, and then generate other files.

For example, the source CSV file, payments.csv, has the following data:

ID;Date;Sum;"Account Name";"Company Name";"Item Name";"Comment"
1;01/10/2014 00:00:00;200000;"My Bank";"Rose, Inc";"Revenue";""
2;01/10/2014 00:00:00;-50000;"My Bank";"Land, Inc";"Expenses";""

You may generate the format file using the fmt mode:

gsqlcmd fmt payments.csv payments.fmt

and edit the column names (remove spaces, for example):

9.0
7
1 SQLCHAR 0 255 ";" 1 "ID" ""
2 SQLCHAR 0 255 ";" 2 "Date" ""
3 SQLCHAR 0 255 ";\"" 3 "Sum" ""
4 SQLCHAR 0 255 "\";\"" 4 "AccountName" ""
5 SQLCHAR 0 255 "\";\"" 5 "CompanyName" ""
6 SQLCHAR 0 255 "\";\"" 6 "ItemName" ""
7 SQLCHAR 0 255 "\"\r\n" 7 "Comment" ""

You may disable column import replacing the column index (column 6) with 0.

Creating Tables in Databases

Then you may create the CREATE TABLE statement:

gsqlcmd create payments.csv payments.create.sql /table=dbo.Payment /fmt=payments.fmt

You may specify the target database platform using the options: /mssql, /sqlce, /mysql, /oracle, /db2, /nuodb, /pgsql, or /sqlite.

The result in payments.create.sql:

CREATE TABLE [dbo].[Payment] (
 [ID] int IDENTITY(1,1) NOT NULL,
 [Date] datetime NULL,
 [Sum] int NULL,
 [AccountName] nvarchar(255) NULL,
 [CompanyName] nvarchar(255) NULL,
 [ItemName] nvarchar(255) NULL,
 [Comment] nvarchar(255) NULL,
 CONSTRAINT [PK_Payment_dbo] PRIMARY KEY CLUSTERED (
 [ID] ASC
)
)
GO
print 'Table [dbo].[Payment] has been created'
GO

Verify and change column data types. In the example, the [Sum] column created as int as the source column contains the integer values only.
13

You may change int to money or to float, for example.

Then you may execute the CREATE TABLE code using the execute mode:

gsqlcmd execute <Connection> payments.create.sql

Note that you may create named connections in a visual mode.
Use one of the following:

gsqlcmd appconfig
gsqlcmd userconfig
gsqlcmd localconfig

Also, you may list available connections using the command:

gsqlcmd connections

Importing CSV Data into Microsoft SQL Server using BCP

You may import CSV data into Microsoft SQL Server using the bcp command line utility included in Microsoft SQL Server client packages.

For example, you may import CSV data from payments.csv into the dbo.Payment table using the following command:

bcp "dbo.Payment" in payments.csv -S . -d <database> -T -f payments.fmt -E

The -E option keeps identity values.

Note that the bcp utility does not support the UTF-8 encoding.
So you may convert CSV data into Windows ANSI encoding or to use methods described below.

See details about the bcp utility at http://msdn.microsoft.com/en-us/library/ms162802.aspx.

Creating and Using OPENROWSET(BUCK...) Statements

To generate the INSERT INTO ... SELECT use the following command:

gsqlcmd bulk payments.csv payments.insert.bulk.sql /table=dbo.Payment /fmt=payments.fmt /insertIdentity

The result file:

SET IDENTITY_INSERT dbo.Payment ON;
INSERT INTO dbo.Payment
 ([ID]
 , [Date]
 , [Sum]
 , [AccountName]
 , [CompanyName]
 , [ItemName]
 , [Comment]
)
SELECT
 t.[ID]
 , t.[Date]
 , t.[Sum]
 , t.[AccountName]
 , t.[CompanyName]
 , t.[ItemName]
 , t.[Comment]
FROM
 (
 SELECT
 [ID] AS [ID]
 , [Date] AS [Date]
 , [Sum] AS [Sum]
 , [AccountName] AS [AccountName]
 , [CompanyName] AS [CompanyName]
 , [ItemName] AS [ItemName]
 , [Comment] AS [Comment]
 FROM
 OPENROWSET(
 BULK 'D:\payments.csv',
 FORMATFILE = 'D:\payments.fmt',
 CODEPAGE = '1250',
 FIRSTROW = 2) t
) t
SET IDENTITY_INSERT dbo.Payment OFF;

14

http://msdn.microsoft.com/en-us/library/ms162802.aspx

If you do not specify the /table option, the INSERT INTO header is not generated.

Pay attention to the /insertIdentity option. It inserts SET IDENTITY_INSERT statements to insert the identity column from the source CSV file.
As another option, you may skip the source identity column specifying 0 in column 6 in the format file.

Note that the OPENROWSET function requires absolute paths to the CSV and format files.
You have to edit paths for your real paths.

You may import the data using this file if the paths are available for your SQL Server instance.

Execute the code using SQL Server Management Studio, the native SQL Server sqlcmd utility or gsqlcmd like:

gsqlcmd execute <Connection> payments.insert.bulk.sql

Also, you may insert this code into a stored procedure.

Yoy may check loaded data using the SELECT statement on the command line. For example:

gsqlcmd execute <Connection> "SELECT * FROM dbo.Payment"

The result:
ID Date Sum AccountName CompanyName ItemName Comment
 1 01/10/2014 00:00:00 200000 My Bank Rose, Inc Revenue
 2 01/10/2014 00:00:00 -50000 My Bank Land, Inc Expenses

Creating SCHEMA.INI Sections for Using with ODBC

You may easily create schema.ini file sections for further using with ODBC.

For example, execute:

gsqlcmd ini payments.csv payments.ini /fmt=payments.fmt

The result in payments.ini:

[payments.csv]
ColNameHeader=True
Format=Delimited(;)
MaxScanRows=100
CharacterSet=1250
Col1="ID" Char Width 255
Col2="Date" Char Width 255
Col3="Sum" Char Width 255
Col4="AccountName" Char Width 255
Col5="CompanyName" Char Width 255
Col6="ItemName" Char Width 255
Col7="Comment" Char Width 255

Copy and paste these rows into the schema.ini file.

Creating and Using OPENROWSET with MICROSOFT.ACE.OLEDB.12.0

The bcp utility and the OPENROWSET(BUCK...) function does not support the UTF-8 encoding.

As a solution, you may use the MICROSOFT.ACE.OLEDB.12.0 provider with the OPENROWSET function.

You may download the MICROSOFT.ACE.OLEDB.12.0 provider at
http://www.microsoft.com/en-us/download/details.aspx?id=13255

To generate the SQL code, use the following command:

gsqlcmd ace payments.csv payments.insert.ace.sql /table=dbo.Payment /fmt=payments.fmt

The result in payments.insert.ace.sql:

INSERT INTO dbo.Payment
 ([ID]
 , [Date]
 , [Sum]
 , [AccountName]
 , [CompanyName]
 , [ItemName]
 , [Comment]
)
SELECT
 t.[ID]
 , t.[Date]

15

http://www.microsoft.com/en-us/download/details.aspx?id=13255

 , t.[Sum]
 , t.[AccountName]
 , t.[CompanyName]
 , t.[ItemName]
 , t.[Comment]
FROM
 (
 SELECT
 [ID] AS [ID]
 , [Date] AS [Date]
 , [Sum] AS [Sum]
 , [AccountName] AS [AccountName]
 , [CompanyName] AS [CompanyName]
 , [ItemName] AS [ItemName]
 , [Comment] AS [Comment]
 FROM
 OPENROWSET('MICROSOFT.ACE.OLEDB.12.0',
 'Text;Database=D:\;HDR=Yes;Format=Delimited(;)',
 'SELECT * FROM [payments.csv]') t
) t

To use this code you have to insert [payments.csv] section into the schema.ini file. See the previous topic.

You may execute the code using SQL Server Management Studio, the native SQL Server sqlcmd utility or gsqlcmd like:

gsqlcmd execute <Connection> payments.insert.ace.sql

Also, you may insert this code into a stored procedure.

Creating INSERT Statements for Importing CSV Data

You may generate INSERT statements and execute them using your favorite database IDE, native database command line utility, or gsqlcmd.

For example:

gsqlcmd insert AzureDemo payments.csv payments.insert.sql /table=dbo.Payment /fmt=payments.fmt

The result in the payments.insert.sql:

INSERT INTO [dbo].[Payment] ([Date], [Sum], [AccountName], [CompanyName], [ItemName])
 VALUES ('20140110 00:00:00.000', 200000, N'My Bank', N'Rose, Inc', N'Revenue');
INSERT INTO [dbo].[Payment] ([Date], [Sum], [AccountName], [CompanyName], [ItemName])
 VALUES ('20140110 00:00:00.000', -50000, N'My Bank', N'Land, Inc', N'Expenses');

Note that the insert mode requires the connection as the first parameter.
gsqlcmd loads the target table definition and generates the code specific for the target database platform.

You may specify the /insertIdentity option to insert identity values from the source CSV file.

It is easy to execute the generated code using gsqlcmd:

gsqlcmd execute AzureDemo payments.insert.sql

The free version allows generating INSERT statements for CSV files with less that 500 rows.
You may purchase Personal or Enterprise Edition to remove this limit.

Creating INSERT and UPDATE Statements for Merging CSV Data

You may generate INSERT and UPDATE statements to merge CSV data into the desired table.

For example:

gsqlcmd merge AzureDemo payments.csv payments.merge.sql /table=dbo.Payment /fmt=payments.fmt

The result in the payments.merge.sql:

UPDATE [dbo].[Payment]
SET
 [Date] = s.[Date]
 , [Sum] = s.[Sum]
 , [AccountName] = s.[AccountName]
 , [CompanyName] = s.[CompanyName]
 , [ItemName] = s.[ItemName]
 , [Comment] = s.[Comment]
FROM
 [dbo].[Payment] t INNER JOIN (
 SELECT 1 AS [ID], '20140110 00:00:00.000' AS [Date], 200000 AS [Sum], N'My Bank' AS [AccountName],

16

 N'Rose, Inc' AS [CompanyName], N'Revenue' AS [ItemName], NULL AS [Comment]
 UNION ALL SELECT 2 AS [ID], '20140110 00:00:00.000' AS [Date], -50000 AS [Sum], N'My Bank' AS [AccountName],
 N'Land, Inc' AS [CompanyName], N'Expenses' AS [ItemName], NULL AS [Comment]
) s ON t.[ID] = s.[ID];

INSERT INTO [dbo].[Payment] ([Date], [Sum], [AccountName], [CompanyName], [ItemName], [Comment]) SELECT s.[Date],
 s.[Sum], s.[AccountName], s.[CompanyName], s.[ItemName], s.[Comment]
FROM (
 SELECT s.[ID], s.[Date], s.[Sum], s.[AccountName], s.[CompanyName], s.[ItemName], s.[Comment]
 FROM (
 SELECT 1 AS [ID], '20140110 00:00:00.000' AS [Date], 200000 AS [Sum], N'My Bank' AS [AccountName],
 N'Rose, Inc' AS [CompanyName], N'Revenue' AS [ItemName], NULL AS [Comment]
 UNION ALL SELECT 2 AS [ID], '20140110 00:00:00.000' AS [Date], -50000 AS [Sum], N'My Bank' AS [AccountName],
 N'Land, Inc' AS [CompanyName], N'Expenses' AS [ItemName], NULL AS [Comment]
) s
 LEFT OUTER JOIN [dbo].[Payment] t ON t.[ID] = s.[ID] WHERE t.[ID] IS NULL
) s;
GO
print 'Processed 2 total records';

Note that the merge mode requires the connection as the first parameter.
gsqlcmd loads the target table definition and generates the code specific for the target database platform.

You may specify the /insertIdentity option to insert identity values from the source CSV file.

It is easy to execute the generated code using gsqlcmd:

gsqlcmd execute AzureDemo payments.merge.sql

The free version allows generating INSERT and UPDATE statements for CSV files with less that 500 rows.
You may purchase Personal or Enterprise Edition to remove this limit.

17

Command Line

Command Line Modes

gsqlcmd [execute] <connection> <sql query | file> [<output file>] [<options>]
gsqlcmd prepare <connection> <sql query | file> [<output file>] [<options>]
gsqlcmd parse <connection> <sql query | file> [<output file>] [<options>]
gsqlcmd insert <connection> <csv file> [<output file>] [<options>]
gsqlcmd update <connection> <csv file> [<output file>] [<options>]
gsqlcmd delete <connection> <csv file> [<output file>] [<options>]
gsqlcmd merge <connection> <csv file> [<output file>] [<options>]
gsqlcmd fmt+ <csv file> [<options>]
gsqlcmd fmt <csv file> [<output file>] [<options>]
gsqlcmd create|bulk|ini|ace <csv file> [<output file>] [<options>]
gsqlcmd localconfig | userconfig | appconfig
gsqlcmd connections
gsqlcmd stamp [<datetime format>]
gsqlcmd help [chm]

<Connection> Format

<ConnectionString name> ConnectionString name from gsqlcmd.exe.config
or <ConnectionString> ConnectionString for OLEDB, ODBC, and DSN
or <ProviderName>;<ConnectionString> ConnectionString for .NET providers

Query Execution Options

/commandTimeout=<seconds>
/connectionTimeout=<seconds>
/noTransaction
/inputCodepage=<codepage>
/outputCodepage=<codepage>
/set=<parameter>=<value | function>[;...]
/trace

Functions for /set and /add parameters

UtcNow() | UtcDateTime()
UtcDate()
UtcTime()
Now() | DateTime()
Date()
Time()
NyseDateTime()
NyseDate()
NyseTime()
FileDateTime(<file>)
FileDateTimeUtc(<file>)
FileDateTimeNyse(<file>)
FileDate(<file>)
FileDateUtc(<file>)
FileDateNyse(<file>)
FileTime(<file>)
FileTimeUtc(<file>)
FileTimeNyse(<file>)
FileName(<file>)
FileNameWithoutExtension(<file>)
FileText(<file>)

Common Output Options

/addRowNum
/append
/asText
/asCsv
/asHtml

18

/dateTimeFormat=<format>
/noHeaders

CSV Input Options

/inputSeparator=<separator>|Tab

CSV Output Options

/add=<header=value | function>[<separator>...]
/[output]Separator=<separator>|Tab
/qouteChar=<char>
/escapeChar=<char>

HTML Output Options

/noTemplate
/placeholder=<placeholder>
/template=<HTML template file>
/title=<title>

Code Generation Options

/table=<target database table | view | stored procedure> | <SQL template file>
/fmt=<format file>
/insertIdentity
/insertNulls
/singleLineSQL
/groupSize=<number of rows>
/keys=<field>[,<field>[,...]]
/mssql | /sqlce | /mysql | /oracle | /db2 | /nuodb | /pgsql | /sqlite

Command Line Modes

Execute

Executes the SQL query or SQL script against the specified connection and outputs the result.

The mode is used to execute queries, export and import data.

Keyword "execute" can be omitted.

Prepare

Prepares the SQL query or SQL script against the specified connection.

Then you may execute the code in the execute mode or using another query tool.

Parse

Parses the SQL query or SQL script against the specified connection.

You may learn commands as they would send to a database server.

Insert, Update, and Delete

Generates SQL statements for the specified CSV file.

The /table option is used to specify the target table, view, stored procedure, or SQL template file, and the /fmt= option is used to specify the
format file with actual column names.

You may execute the generated SQL file using the execute mode.

The free version has a limit in 500 rows.

Merge

19

Generates insert and update statements to merge data from the specified CSV file.

The /table option is used to specify the target table or view, and the /fmt= option is used to specify the format file with actual column names.

You may execute the generated SQL file using the execute mode.

The free version has a limit in 500 rows.

Fmt+

Generates all configuration files for importing CSV files using different techniques.

This mode is equivalent to executing the series of Fmt, Create, Ace, Buck, and Ini.

The format file is created only if it does not exist. If the format file exists, it used as a column name source.

You may run gsqlcmd in this mode twice: the first run for generating all files as is, and the second run after editing the format file.

Fmt

Generates format files for importing CSV files into Microsoft SQL Server using the OPENROWSET(BUCK...) function.

Also, the format files are used as a column name sources for other modes.

Create

Generates CREATE TABLE statements for further importing CSV files.

The /table option is used to specify the target table and the /fmt= option is used to specify the format file with actual column names.

Ace

Generates OPENROWSET statements for importing CSV files using the MICROSOFT.ACE.OLEDB.12.0 provider.

The /table option is used to specify the target table and the /fmt= option is used to specify the format file with actual column names.

OPENROWSET using the MICROSOFT.ACE.OLEDB.12.0 provider allows importing data in the UTF-8 encoding that is not supported by the
OPENROWSET BULK statement.

Bulk

Generates OPENROWSET(BULK...) statements for importing CSV files.

The /table option is used to specify the target table and the /fmt= option is used to specify the format file with actual column names.

Ini

Generates descriptions for the schema.ini file that is used for importing CSV files using ODBC drivers into Microsoft Excel or databases.

The /fmt= option is used to specify the format file with actual column names.

LocalConfig | UserConfig | AppConfig

Starts gConnectionManager to edit named connections in configuration files:

LocalConfig - gsqlcmd.exe.config in the current directory.
UserConfig - gsqlcmd.exe.config in the %LocalAppData%\Gartle\gsqlcmd folder.
AppConfig - gsqlcmd.exe.config in the utility folder.

Connections

Lists all connections from all configuration files described above.

Stamp

The mode can be used in the batch files to set variable values like:

20

for /F %%i in ('gsqlcmd.exe stamp') do set stamp=%%i

Help

Starts extended command line help or starts this CHM help file if the chm parameter specified.

21

Command Line Positional Parameters

<Connection>

Defines a connection to a database.

There are three options to specify the connection:

1. A connection name defined in gsqlcmd.exe.config (or gsqlcmd32.exe.config for gsqlcmd32.exe).
2. A connection string for OLEDB, ODBC, and DSN.
3. A .NET Framework data provider name and a connection string separated by a semicolon.

The first option is the handiest as you can use short names and store encrypted connection strings in the configuration files.

For example, gsqlcmd.exe.config can contain the following lines:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add name="AzureDemo" connectionString="Provider=SQLOLEDB;Data Source=.\SQLEXPRESS;Initial Catalog=AzureDemo;Integrated S
ecurity=SSPI"
 providerName="System.Data.OleDb" />
 <add name="mssql-rtd" connectionString="Data Source=.;Initial Catalog=RTD;Password=r#td_2014_abc!;User ID=rtd"
 providerName="System.Data.SqlClient" />
 <add name="sqlce-rtd" connectionString="Data Source=%LOCALAPPDATA%\Gartle\RealTimeToDB\rtd.sdf"
 providerName="System.Data.SqlServerCe.4.0" />
 <add name="mysql-rtd" connectionString="Server=localhost;Password=r#td_2014_abc!;User ID=rtd;Database=rtd"
 providerName="MySql.Data.MySqlClient" />
 <add name="ora-rtd" connectionString="Provider=OraOLEDB.Oracle;Password=r#td_2014_abc!;User ID=RTD;Data Source=Oracle/Orc
l;PLSQLRSet=True"
 providerName="System.Data.OleDb" />
 <add name="db2-rtd" connectionString="Driver=IBM DB2 ODBC DRIVER;Hostname=DB2;Port=50000;Protocol=TCPIP;Database=SAMPLE;P
wd=r#td_2014_abc!;UID=RTD;LONGDATACOMPAT=1"
 providerName="System.Data.Odbc" />
 <add name="nuodb-rtd" connectionString="Server=localhost;Password=r#td_2014_abc!;User=RTD;Database=rtd"
 providerName="NuoDb.Data.Client" />
 <add name="pgsql-rtd" connectionString="Server=localhost;Password=r#td_2014_abc!;User ID=rtd;Database=rtd"
 providerName="Npgsql" />
 </connectionStrings>
</configuration>

This allows using names like AzureDemo, mssql-rtd, sqlce-rtd, and others as the command line connection parameter.

Use LocalConfig, UserConfig, or AppConfig gsqlcmd modes to edit configurations files in visual mode using gConnectionManager.

The second option allows specifying only the connection string if an OLE DB provider, ODBC driver, or a DSN file is used.

For example:

gsqlcmd "Provider=SQLOLEDB;Data Source=.\SQLEXPRESS;Initial Catalog=AzureDemo;Integrated Security=SSPI" framework-install-en.
sql

You may pass connection strings in environment variables. For example:

set connection=Provider=SQLOLEDB;Data Source=.\SQLEXPRESS;Initial Catalog=AzureDemo;Integrated Security=SSPI

gsqlcmd "%connection%" framework-install-en.sql

Use double quotes for such variables.

The third connection option with a provider name before the connection string is used for .NET Framework data providers.

For example:

gsqlcmd "MySql.Data.MySqlClient;Server=localhost;Password=r#td_2014_abc!;User ID=rtd;Database=rtd" framework-install-en.sql

<SQL Query> | <SQL File>

The second mandatory positional parameter of the execute mode specifies an SQL query or an SQL script file name.

For example:

gsqlcmd rtd-ora "SELECT * FROM SYS.ALL_USERS"

gsqlcmd rtd-ora rtd-setup-ora.sql

22

The utility checks the file with the parameter value and reads the script if the file exists. Otherwise, it sends the value to a server as a query.

<CSV File>

The parameter specifies the CSV file used for generating configuration files and SQL statements.

<Output File>

This optional parameter specifies an output file name.

The console is used by default.

The output file extension is used to determine the default output format for the execute mode:

*.txt - text format;
*.csv - CSV;
*.htm or *.html - HTML.

23

Query Execution Options

/CommandTimeout=<seconds>

This option is used to change the timeout of command execution.

/ConnectionTimeout=<seconds>

This option is used to change the server connection timeout.

/NoTransaction

Disables the transaction mode for executing queries and scripts.

You may turn off the transaction mode, for example, for deleting database objects using scripts.

Otherwise, the scripts can be discarded by rollback if some of the deleted objects do not exist.

/InputCodePage=<codepage>

Defines the input file code page.

Example:

/inputcodepage=65001

/OutputCodePage=<codepage>

Defines the output file code page.

Example:

/outputcodepage=1250

/Set=<parameter>=<value | function>[;...]

Defines SQL statement or script parameter values.

For example:

gsqlcmd mssql-rtd "SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = @Table" /set=Table=RealTimeTables
gsqlcmd mysql-rtd "SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = :Table" /set=Table=real_time_tables

Use the following parameter declarations:

@Parameter for Microsoft SQL Server, Microsoft SQL Server Compact, and SQLite
:Parameter for MySQL, MariaDB, Oracle Database, IBM DB2, NuoDB, and PostgreSQL.

Do not use the /set option with scripts that contain parameter declarations as a part of SQL code for a database server.
For example, if the script contains codes for creating stored procedures and triggers.

Parameter types are determined by value types: string, number, or datetime.

Use single quotes to define a string type for a number value. For example: '123' instead of 123.

24

Functions for /set and /get Parameters

Function Meaning

UtcNow() Current UTC date and time

UtcDateTime() Current UTC date and time

UtcDate() Current UTC date

UtcTime() Current UTC time

Now() Current date and time

DateTime() Current date and time

Date() Current date

Time() Current time

NyseDateTime() NYSE trade date and time

NyseDate() NYSE trade date

NyseTime() NYSE trade time

FileDateTime(<File>) File date and time

FileDateTimeUtc(<File>) File UTC date and time

FileDateTimeNyse(<File>) File date and time as NYSE trade date and time

FileDate(<File>) File date

FileDateUtc(<File>) File UTC date

FileDateNyse(<File>) File date as NYSE trade date

FileTime(<File>) File time

FileTimeUtc(<File>) File UTC time

FileTimeNyse(<File>) File time as NYSE trade time

FileName(<File>) File name

FileNameWithoutExtension(<File>) File name without extension

FileText(<File>) File text

/Trace

Turns on tracing SQL commands sent to a server.

Use this mode to debug scripts or to measure the execution time of SQL commands.

By default, the trace messages are written to the console.

You may define the log file for trace messages in gsqlcmd.exe.config in the gsqlcmd home directory.

25

Common Output Options

/AddRowNum

If the option is specified, the first column with row numbers is added to the output.

/Append

If the option is specified, the data are added to the output file. Otherwise, the existing file is replaced by a new one.

/AsText | AsCSV | AsHTML

Use this option to specify the output format if the format can't be determined by the output file extension.

/DateTimeFormat=<datetime format>

This option is used to specify the format for datetime values in the output.

See http://msdn.microsoft.com/en-us/library/zdtaw1bw(v=vs.100).aspx about the format string.

Example:

gsqlcmd rtd-db2 "SELECT * FROM RTD.QUOTES_YAHOO" QUOTES_YAHOO.CSV /datetimeformat=yyyy-MM-dd

Use double quotes to specify formats with spaces. For example:

"/datetimeformat=yyyy-MM-dd hh:mm:ss"

/NoHeaders

Disables header output.

26

http://msdn.microsoft.com/en-us/library/zdtaw1bw(v=vs.100).aspx

CSV Options

/Add=<header=value | function>[<separator>...]

This option is used to specify additional data in the CSV output.

Example:

gsqlcmd rtd-sqlce "SELECT * FROM QuotesYahoo" QuotesYahoo.csv /add=File=QuotesYahoo.csv

In this example, the first column File will contain the value: QuotesYahoo.csv.

Functions for /set and /get Parameters

Function Meaning

UtcNow() Current UTC date and time

UtcDateTime() Current UTC date and time

UtcDate() Current UTC date

UtcTime() Current UTC time

Now() Current date and time

DateTime() Current date and time

Date() Current date

Time() Current time

FileDateTime(<File>) File date and time

FileDate(<File>) File date

FileTime(<File>) File time

FileName(<File>) File name

FileNameWithoutExtension(<File>) File name without extension

FileText(<File>) File text

/[Output]Separator=<separator>|tab

Defines the input CSV separator.

The default separator is a semicolon.

Use the Tab value to specify the tab.

For example:

gsqlcmd rtd-mysql "SELECT * FROM rtd.quotes_yahoo" quotes_yahoo.csv /separator=,

/InputSeparator=<separator>|tab

Defines the input CSV separator.

/QuoteChar=<char>

Defines the quote character for string values.

The default value is a double quote. You may disable quotes using the form: /QuoteChar=

/EscapeChar=<char>

Defines the escape character for escaping used quote character in string values.

The default value is a double quote. You may disable escaping using the form: /EscapeChar=

27

HTML Output Options

/NoTemplate

Disables using a template for HTML output.

/Placeholder=<placeholder>

Defines the placeholder that replaced with the table data output HTML.

For example, if an HTML template contains the {sales} placeholder, you may use the option: /placeholder={Sales}

The default placeholder is {table}.

/Template=<HTML template file>

Defines a template for HTML output.

The template can contain the {table} placeholder that replaced with the table data output HTML.

By default, the table data are inserted before the </body> tag.

The template can also contain the {title} placeholder that replaced with the title option value.

/Title=<title>

Defines the value for the {title} placeholder in the HTML template.

28

Code Generation Options

/Table=<target database table | view | stored procedure> | <SQL template file>

Defines the target database table, view, stored procedure or SQL template file for code generation.

For example: /table=dbo.Payments

The option is obligatory for Insert, Update, Delete and Merge modes.

/fmt=<format file>

Defines the format file for code generation.

The file is used as a column name source instead of the CSV file.

The default value of this option is a file name of the CSV file with the .fmt extension.

/InsertIdentity

Defines including auto-generated identity columns into INSERT and MERGE SQL codes.

/InsertNulls

Defines including NULL values into generated INSERT SQL codes.

/SingleLineSQL

Defines generating single line INSERT and MERGE SQL codes.

/GroupSize=<number of rows>

Defines number of rows separated by the GO batch separator.

/keys=<field>[,<field>[,...]]

Defines fields used instead of primary key fields in INSERT, UPDATE, and DELETE commands.
You may use this option, for example, to synchronize data between different databases using fields like email or SSN instead of identity fields.

/mssql | sqlce | mysql | oracle | db2 | nuodb | pgsql | sqlite

Defines target database platform for code generation.

The option is used in the modes that have no connection positional parameter.

Exit Codes

Exit Code Description

0 Success

1 Incomplete command line parameters

2 Wrong command line parameters

3 Exceptions occurred

4 Database server returns an error

29

gConnectionManager

gConnectionManager allows editing connections in application configuration files.

You may use the gsqlcmd commands to start the gConnectionManager with a specific configuration file:

gsqlcmd localconfig | userconfig | appconfig

Also, you may open the desired configuration file using the File, Open menu item.

Here is a configuration file example:

30

Here is an example of selecting a connection provider:

Here is an example of connecting to a database:

31

Configuration File

Connections can be specified in the gsqlcmd.exe.config configuration file.

For example:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <add name="AzureDemo" connectionString="Provider=SQLOLEDB;Data Source=.\SQLEXPRESS;Initial Catalog=AzureDemo;Integrated S
ecurity=SSPI"
 providerName="System.Data.OleDb" />
 <add name="mssql-rtd" connectionString="Data Source=.;Initial Catalog=RTD;Password=r#td_2014_abc!;User ID=rtd"
 providerName="System.Data.SqlClient" />
 <add name="sqlce-rtd" connectionString="Data Source=%LOCALAPPDATA%\Gartle\RealTimeToDB\rtd.sdf"
 providerName="System.Data.SqlServerCe.4.0" />
 <add name="mysql-rtd" connectionString="Server=localhost;Password=r#td_2014_abc!;User ID=rtd;Database=rtd"
 providerName="MySql.Data.MySqlClient" />
 <add name="ora-rtd" connectionString="Provider=OraOLEDB.Oracle;Password=r#td_2014_abc!;User ID=RTD;Data Source=Oracle/Orc
l;PLSQLRSet=True"
 providerName="System.Data.OleDb" />
 <add name="db2-rtd" connectionString="Driver=IBM DB2 ODBC DRIVER;Hostname=DB2;Port=50000;Protocol=TCPIP;Database=SAMPLE;P
wd=r#td_2014_abc!;UID=RTD;LONGDATACOMPAT=1"
 providerName="System.Data.Odbc" />
 <add name="nuodb-rtd" connectionString="Server=localhost;Password=r#td_2014_abc!;User=RTD;Database=rtd"
 providerName="NuoDb.Data.Client" />
 <add name="pgsql-rtd" connectionString="Server=localhost;Password=r#td_2014_abc!;User ID=rtd;Database=rtd"
 providerName="Npgsql" />
 </connectionStrings>
</configuration>

This allows using names like AzureDemo, mssql-rtd, sqlce-rtd, and others as the command line connection parameter.

Use LocalConfig, UserConfig, or AppConfig gsqlcmd modes to edit configurations files in visual mode using gConnectionManager.

The configuration file can also be edited using notepad.exe.

The configuration file can also be used to specify database connection providers if their components are located in the utility directory.

For example, gsqlcmd includes the MySQL .NET provider that is specified in the DbProviderFactories section:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 ...
 <system.data>
 <DbProviderFactories>
 <remove invariant="MySql.Data.MySqlClient"/>
 <add name="MySQL Data Provider"
 invariant="MySql.Data.MySqlClient"
 description=".Net Framework Data Provider for MySQL"
 type="MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data, Version=6.8.3.0, Culture=neutral, PublicKeyToken=c5687
fc88969c44d" />
 </DbProviderFactories>
 </system.data>
</configuration>

32

Product Registration

gsqlcmd has several editions. See Edition comparison.

The registration is required to register the Personal or Enterprise Edition.

If you copy the product from the gsqlcmd package to the desired folder, run RegisterProduct.exe.

If you install the product in an integrated mode, click the Register Product shortcut in the gsqlcmd group of the Start menu.

You may find the gsqlcmd group in one of the parent groups depend on the setup package:

Gartle\gsqlcmd
Gartle\SaveToDB\gsqlcmd
Gartle\RealTimeToDB\gsqlcmd

A product code is required to register the Personal or Enterprise edition.

The product code is sent by email after purchasing.

Selecting Product

Gartle products have unified registration procedure.

Select the product to register on the start page.

Select Product

33

Selecting Edition

Select an edition and fill in the product code for the Personal or Enterprise edition.

Select Edition

Licensee Data

Please complete the registration form carefully.

Select an edition and fill in the product code for the Personal or Enterprise edition.

The Next button is enabled when all the required fields are filled.

Don't forget to check the required field about the personal data use.

Fill personal data

34

Online Registration

This step allows you to check your email address and to pause before the final step.

If the licensee data is valid, click Next.

You may return to the previous step using the Back button.

After clicking the Next button, the gsqlcmd connects to the registration server.

Check online data

If the connection is successful, the final step screen is shown.

If any error occurred during connection, you might try to register the product later or try to register the product by email.

You may set the registration for all users of the computer. This action requires administrator privileges.

Click Finish.

Final step

35

Registration by Email

If you choose the Register by email option on the Licensee Data step, the following screen is displayed:

The Next button starts the default email program, creates a registration email, and activates the next step.
Don't forget to send the email.

Check email data

If starting of the email program has failed, you may create the registration email manually using the shown registration data.
Please carefully copy the To, Subject, and the Message fields.

The registration server sends the reply in a couple of seconds; but you may close the dialog box and open it again, in the same step.

Please copy the activation code from the received registration email and paste it into the Activation code field.

The Next button is enabled when the pasted activation code is valid.

Click Next to continue.

Activation

36

The gsqlcmd checks the registration data and confirms the registration.

You may set the registration for all users of the computer. This action requires administrator privileges.

Click Finish.

Final step

37

Techni cal Suppor t

Technical Support

You may download the latest releases at www.gsqlcmd.com.

You may contact us via email support@gsqlcmd.com.

See also Frequently Asked Questions.

Frequently Asked Questions

Why gsqlcmd does not support other database servers if a connection string and an SQL statement are specified on the command
line?

gsqlcmd allows executing server specific scripts and works fine with all supported database servers.
Why gsqlcmd uses connection strings instead of connection components (server, database, etc.) on the command line as other
command line utilities?

The single parameter as a connection string is handy. You may use a connection string by name. You may pass it in a single environment
variable. You may use existing and future features of connection strings.
Also, you may use gConnectionManager, our companion product, to create connection strings in visual mode using servers, databases, and
other connection string components.

What executable, gsqlcmd.exe or gsqlcmd32.exe, should I use?
gsqlcmd uses database providers and drivers of the same bitness.
So, if you have both 64-bit and 32-bit providers installed, you may use any of executables.
But, if you have only the 32-bit providers installed on 64-bit Windows, use gsqlcmd32.exe.
gsqlcmd32.exe uses the gsqlcmd32.exe.config configuration file.

My script returns obscure errors. How to debug the script?
gsqlcmd allows executing DDL and DML scripts and supports the most useful extensions of database vendor command line utilities.
If the script is not working, you may try to execute the script using the database vendor command line utility or your favorite IDE.
Also, you may specify the /trace option to get the text of each sent command and corresponding server reply.
If you think, that the standard script is not working, please, send us the script text.

38

http://www.gsqlcmd.com/
mailto:support@gsqlcmd.com

	Table of Content
	Getting Started
	Getting Started
	Change History
	Version 4.1, February 3, 2017
	Version 4.0.3, January 25, 2017
	Version 4.0, January 17, 2017
	Version 3.4, November 2, 2016
	Version 3.3, June 21, 2016
	Version 3.2, March 15, 2016
	Version 3.1, December 23, 2015
	Version 3.0, October 20, 2015

	Edition Comparison
	System Requirements
	End-User License Agreement

	Using gsqlcmd
	Using gsqlcmd
	Database Connections
	Executing SQL Scripts
	Exporting Database Data
	Using Variables in SQL Scripts
	Internal Script Commands
	Transaction Modes
	Trace Mode
	Importing CSV Data into Databases
	Creating Format Files
	Creating Tables in Databases
	Importing CSV Data into Microsoft SQL Server using BCP
	Creating and Using OPENROWSET(BUCK...) Statements
	Creating SCHEMA.INI Sections for Using with ODBC
	Creating and Using OPENROWSET with MICROSOFT.ACE.OLEDB.12.0
	Creating INSERT Statements for Importing CSV Data
	Creating INSERT and UPDATE Statements for Merging CSV Data

	Command Line
	Command Line Modes
	<Connection> Format
	Query Execution Options
	Functions for /set and /add parameters
	Common Output Options
	CSV Input Options
	CSV Output Options
	HTML Output Options
	Code Generation Options

	Command Line Modes
	Execute
	Prepare
	Parse
	Insert, Update, and Delete
	Merge
	Fmt+
	Fmt
	Create
	Ace
	Bulk
	Ini
	LocalConfig | UserConfig | AppConfig
	Connections
	Stamp
	Help

	Command Line Positional Parameters
	<Connection>
	<SQL Query> | <SQL File>
	<CSV File>
	<Output File>

	Query Execution Options
	/CommandTimeout=<seconds>
	/ConnectionTimeout=<seconds>
	/NoTransaction
	/InputCodePage=<codepage>
	/OutputCodePage=<codepage>
	/Set=<parameter>=<value | function>[;...]
	Functions for /set and /get Parameters
	/Trace

	Common Output Options
	/AddRowNum
	/Append
	/AsText | AsCSV | AsHTML
	/DateTimeFormat=<datetime format>
	/NoHeaders

	CSV Options
	/Add=<header=value | function>[<separator>...]
	Functions for /set and /get Parameters
	/[Output]Separator=<separator>|tab
	/InputSeparator=<separator>|tab
	/QuoteChar=<char>
	/EscapeChar=<char>

	HTML Output Options
	/NoTemplate
	/Placeholder=<placeholder>
	/Template=<HTML template file>
	/Title=<title>

	Code Generation Options
	/Table=<target database table | view | stored procedure> | <SQL template file>
	/fmt=<format file>
	/InsertIdentity
	/InsertNulls
	/SingleLineSQL
	/GroupSize=<number of rows>
	/keys=<field>[,<field>[,...]]
	/mssql | sqlce | mysql | oracle | db2 | nuodb | pgsql | sqlite

	Exit Codes
	gConnectionManager
	Configuration File
	Product Registration
	Selecting Product
	Selecting Edition
	Licensee Data
	Online Registration
	Registration by Email

	Technical Support
	Technical Support
	Frequently Asked Questions

